Reliable Self-assembly by Self-triggered Activation of Enveloped DNA Tiles

نویسندگان

  • Vinay Kumar Gautam
  • Pauline C. Haddow
  • Martin Kuiper
چکیده

Although the design of DNA tiles has been optimised for efficient and specific self-assembly, assembly errors occur so often that applications for molecular computation remain limited. We propose the use of an enveloped tile consisting of a DXbase tile that carries a protector tile to suppress erroneous tile assembly. The design of the enveloped tile promotes the dissociation of the protector tile from the base tile through a self-triggered activation process, which keeps the outputs of the base tile stay protected until both base tile inputs have bonded correctly to the assembly. The enveloped tile design, the self-triggered activation that removes the protector tile and preliminary modelling results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating DNA strand-displacement circuitry with DNA tile self-assembly

DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson-Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displa...

متن کامل

Programmable Assembly at the Molecular Scale: Self-Assembly of DNA Lattices (Invited Paper)

DNA self-assembly is a methodology for the construction of molecular scale structures. In this method, arti cially synthesized single stranded DNA self-assemble into DNA crossover molecules (tiles). These DNA tiles have sticky ends that preferentially match the sticky ends of certain other DNA tiles, facilitating the further assembly into tiling lattices. DNA self-assembly can, using only a sma...

متن کامل

One-Time, Directed and Catalytic Activation of 1-D DNA Tiles

Experimental demonstration of the Turing universal tile based algorithmic DNA self-assembly has been limited by significant assembly errors. An important class of errors, called co-ordinated growth errors, occur when an incorrect tile binds to a growing assembly even when some of its pads are mismatched with its neighbors. Activatable DNA tiles, introduced originally by [12], employ a protectio...

متن کامل

Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.

Bottom-up fabrication of nanoscale structures relies on chemical processes to direct self-assembly. The complexity, precision, and yield achievable by a one-pot reaction are limited by our ability to encode assembly instructions into the molecules themselves. Nucleic acids provide a platform for investigating these issues, as molecular structure and intramolecular interactions can encode growth...

متن کامل

DNA Tiles, Wang Tiles and Combinators

In this paper we explore the relation between Wang Tiles and Schonfinkel Combinators in order to investigate Functional Combinators as an programming language for Self-assembly and DNA computing. We show: How any combinatorial program can be expressed in terms of Wang Tiles, and again, how any computation of the program fits into a grid of tiles of a suitable finite, tile set, and finally, how ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013